Effect of sperm DNA fragmentation on blastocyst formation rate and subsequent IVF outcome

Sankar Kumar Das, Krishna Kalita


Background: Male infertility associated with sperm DNA alteration has raised a new issue in assisted reproduction techniques (ARTs).

Methods: It was a retrospective analytical study on 250 cases of routine IVF/ICSI performed at Swagat ART Centre from January 2017 to January 2020. We divided the patient according to the sperm DNA fragmentation index (DFI) as normal DFI≤15%, n=95, a moderate DFI≤30%, n=89, and a high DFI group >30%, n=66. Oocytes of each patient were almost equally divided and fertilization method was adopted as half IVF half ICSI or only ICSI in poor quality (oligo, astheno, teratozoospermia or with two or all three defect and compared the fertilization, cleavage, embryo formation, blastocyst formation, pregnancy and early embryo formation rate among these six groups.  

Results: Fertilization, cleavage, embryo formation, and clinical pregnancy rates were reported as higher in ≤15% DFI group of both IVF and ICSI-ET (87.3±26.2, 77.7±26.1, 68.2±28.8, 50.8 in IVF and 78.3±17.8, 70.3±31.2, 67.2±28.8, 57.6 respectively). Significant differences (p<0.01) are observed among all six groups. Higher abortion rate is observed in high DFI group of both IVF and ICSI.

Conclusions: High sperm DFI causes low blastocyst formation and pregnancy outcome.  Higher abortion rate observed in high DFI group indicated need of further study.


DNA fragmentation, Sperm, IVF, ICSI outcome, Blastocyst formation

Full Text:



Zini A, Boman JM, Belzile E, Ciampi A. Sperm DNA damage is associated with an increased risk of pregnancy loss after IVF and ICSI: systematic review and meta-analysis. Hum Reprod. 2008;23(12):2663-8.

Avendaño C, Franchi A, Duran H, Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94(2):549-57.

Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89(4):823-31.

Lin MH, Kuo-Kuang LR, Li SH, Lu CH, Sun FJ, Hwu YM. Sperm chromatin structure assay parameters are not related to fertilization rates, embryo quality, and pregnancy rates in in vitro fertilization and intracytoplasmic sperm injection, but might be related to spontaneous abortion rates. Fertil Steril. 2008;90(2):352-9.

Borini A, Tarozzi N, Bizzaro D, Bonu MA, Fava L, Flamigni C, et al. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod. 2006;21(11):2876-81.

Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril. 2003;80(4):895-902.

Henkel R, Kierspel E, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, et al. DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod Biomed Online. 2003;7(4):477-84.

Frydman N, Prisant N, Hesters L, Frydman R, Tachdjian G, Cohen-Bacrie P, et al. Adequate ovarian follicular status does not prevent the decrease in pregnancy rates associated with high sperm DNA fragmentation. Fertil Steril. 2008;89(1):92-7.

Marchetti F, Essers J, Kanaar R, Wyrobek AJ. Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc Natl Acad Sci U S A. 2007;104(45):17725-9.

Smith MJ, Edwards RG. DNA repair by oocytes. Mol Hum Reprod. 1996;2(1):46-51.

Seli E, Sakkas D. Spermatozoal nuclear determinants of reproductive outcome: implications for ART. Hum Reprod Update. 2005;11(4):337-49.

Osman A, Alsomait H, Seshadri S, El-Toukhy T, Khalaf Y. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod Biomed Online. 2015;30(2):120-7.

Gomes M, Gonçalves A, Rocha E, Sá R, Alves A, Silva J, et al. Effect of in vitro exposure to lead chloride on semen quality and sperm DNA fragmentation. Zygote. 2015;23(3):384-93.

Yang H, Li G, Jin H, Guo Y, Sun Y. The effect of sperm DNA fragmentation index on assisted reproductive technology outcomes and its relationship with semen parameters and lifestyle. Transl Androl Urol. 2019;8(4):356-65.

Barratt CL, Aitken RJ, Björndahl L, Carrell DT, Boer P, Kvist U, et al. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications--a position report. Hum Reprod. 2010;25(4):824-38.

Virro MR, Cook KL, Evenson DP. Sperm chromatin structure assay (SCSA) parameters are related to fertilization, blastocyst development, and ongoing pregnancy in in vitro fertilization and intracytoplasmic sperm injection cycles. Fertil Steril. 2004;81(5):1289-95.

Bounartzi T, Dafopoulos K, Anifandis G, Messini CI, Koutsonikou C, Kouris S, et al. Pregnancy prediction by free sperm DNA and sperm DNA fragmentation in semen specimens of IVF/ICSI-ET patients. Hum Fertil (Camb). 2016;19(1):56-62.

Zhang Y, Wang H, Wang L, Zhou Z, Sha J, Mao Y, et al. The clinical significance of sperm DNA damage detection combined with routine semen testing in assisted reproduction. Mol Med Rep. 2008;1(5):617-24.

Sun TC, Zhang Y, Li HT, Liu XM, Yi DX, Tian L, et al. Sperm DNA fragmentation index, as measured by sperm chromatin dispersion, might not predict assisted reproductive outcome. Taiwan J Obstet Gynecol. 2018;57(4):493-8.

Slama R, Bouyer J, Windham G, Fenster L, Werwatz A, Swan SH. Influence of paternal age on the risk of spontaneous abortion. Am J Epidemiol. 2005;161(9):816-23.

Borges E, Zanetti BF, Setti AS, Braga DPAF, Provenza RR, Iaconelli A. Sperm DNA fragmentation is correlated with poor embryo development, lower implantation rate, and higher miscarriage rate in reproductive cycles of non-male factor infertility. Fertil Steril. 2019;112(3):483-90.

Choi HY, Kim SK, Kim SH, Choi YM, Jee BC. Impact of sperm DNA fragmentation on clinical in vitro fertilization outcomes. Clin Exp Reprod Med. 2017;44(4):224-31.