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INTRODUCTION 

The buffalo (Bubalus bubalis, L.) is an important 

component of livestock in several countries in the world. 

One of the banes of buffalo production is low reproductive 

performance.1 The response to multiple ovulation and 

embryo transfer (MOET) techniques is poor in buffaloes.2 

The problem of in vitro embryo production (IVEP) 

technology in buffalo is the low number of oocytes that 

can be recovered from donors. This phenomena arises 

from physiological peculiarities of the species such as the 

low number of primordial and antral follicles present in the 

buffalo ovary as well as the high incidence of follicular 

atresia and as such, it is not easily improvable.3 The 

scarcity of buffalo oocytes is a drawback for exploiting 

embryo technologies. Cryopreservation of oocytes 

collected from slaughtered buffaloes might increase the 

availability of buffalo oocytes for reproductive 

technologies. 
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ABSTRACT 

Background: Vitrification, ultra-rapid cooling can be used to cryopreserve oocytes for embryo technology. The 

objective of this study was to evaluate the effects of sucrose and glycerol on vitrification of buffalo oocytes. 
Methods: Cumulus-oocyte complexes (COCs) were aspirated from slaughtered buffalo ovaries. In experiment 1, the 

vitrification solution was supplemented with either 0, 0.25 or 0.5 M sucrose. In experiment 2, the vitrification solution 

was supplemented with either 0, 5 or 10 M glycerol together with 0.5 M sucrose. COCs were exposed into equilibration 

solution and vitrification solution for 5 min and 1 min, respectively. Then the oocytes were submerged into liquid 

nitrogen for 10 min using cryotops. The oocytes were thawed, diluted and washed in washing solution. Vitrified oocytes 

were cultured for maturation at 38.5°C for 24 hrs at 5% CO2. Then oocytes were fixed in acetic acid and ethanol and 

stained with aceto-orcein to examine the meiotic stages.  
Results: In experiment 1, a significantly higher number of morphologically normal oocytes and cumulus cell expansion 

were found in 0.5 M sucrose group than others. In addition, a proportion of oocytes resumed meiosis but none of those 

developed to the metaphase II (MII) stage. In experiment 2, a significantly higher number of oocytes showed cumulus 

cell expansion as well as higher morphologically normal oocytes in 5 M and 10 M glycerol than in 0 M (control) group. 

In addition, 18% oocytes matured to the MII stage in 5 M glycerol group. 
Conclusions: Buffalo oocytes can be vitrified with a combination of sucrose and glycerol to maintain its developmental 

potential. 
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Cryopreservation could be conducted through vitrification 

which is an ultra-rapid cooling technique.4 The advances 

of vitrification methods have simplified the 

cryopreservation procedures. Different cryoprotectants 

like ethylene glycol (EG), glycerol (GLY), 

dimethylsulfoxide (DMSO), propylene glycol and 1, 2-

propanediol (PROH) and sucrose have been used in 

different combinations for vitrification of buffalo oocytes 

and embryos.5 EG is considered an important 

cryoprotectant due to its higher penetrating ability with 

low toxicity.6 DMSO has been used for vitrification of 

oocytes in many species including buffalo and cattle.7,8  

Sugar molecules including sucrose, trehalose, glucose, 

fructose, ficoll and raffinose are used in cryopreservation 

of oocytes and embryos to prevent osmotic shock and 

reduce cytotoxicity.9 The addition of sugar equalizes 

osmolality between the extracellular diluting solution and 

the intracellular solution.10 The damage caused by 

intracellular ice formation cannot be prevented, but it can 

be significantly minimized by cellular dehydration.11 

Disaccharides have been used for vitrification of oocytes 

and embryos in species such as mouse, rabbit, sheep, 

horse, cattle, buffalo and human embryos.12-18 They have 

also used for oocytes studies in mouse, cattle, buffalo and 

human.19-23 The effects of different sugars (glucose, 

sucrose or a polysaccharide) as non-permeant cryo-

protectants in vitrification media on in vitro maturation of 

vitrified-warmed immature (GV) porcine oocytes have 

been studied and indicate that sucrose-treated oocytes have 

higher maturation rates compared to oocytes vitrified in 

glucose supplemented cryoprotectant.24 

Glycerol has been used as a cryoprotectant in combination 

with EG and/or DMSO during oocyte vitrification in 

buffaloes.7,25 Glycerol-treated oocytes show higher DNA 

methylation compared with DMSO and fresh oocytes. The 

present study was aimed to examine the effect of 

supplementing sucrose and glycerol in EG and DMSO 

based cryoprotectant in in vitro maturation of buffalo 

oocytes.  

METHODS 

This study was conducted in the department of animal 
science, Bangladesh agricultural university, Mymesningh, 
Bangladesh during the period from July 2015 to June 2017. 

Chemicals 

All culture-grade chemicals were purchased from Sigma-
Aldrich (St. Louis, MO) unless otherwise mentioned. 

Collection of COCs 

Buffalo ovaries were collected from a local slaughterhouse 
(Kaptan Bazar, Dhaka) without considering the season of 
animal slaughter and transported to the laboratory in 0.9% 
normal saline at 37°C. The ovaries were washed in 
Dulbecco’s phosphate buffer saline (DPBS) solution 

supplemented with gentamycin sulfate (50 mg/ml) once 
and rinsed three times in DPBS. Visible antral follicles (4-
8 mm in diameter) were aspirated using a 20 gauge needle 
attached to a 10 ml syringe to collect COCs. The COCs 
were screened under a stereomicroscope and washed three 
times in TCM-199 (pH 7.4, Nissui Pharmaceutical, Tokyo, 
Japan) containing 0.85 mg/ml NaHCO3, 0.08 mg/ml 
gentamycin sulfate and 25 mM HEPES in a plastic dish 
(No. 1008, Falcon, Becton Dickinson and Company, 
Franklin lakes, NJ, USA) for vitrification. COCs 
containing healthy oocytes (120-130 μm in diameters) 
were selected based on their morphological appearance 
(uniformly granulated cytoplasm surrounded by 
multilayered COCs) for vitrification.26 

Vitrification and warming of COCs 

COCs were vitrified following the procedure of our 
previous reports.27,28 The basic solution (M-199) was 
TCM-199 containing 2.5 mg/ml HEPES, 2.47 mg/ml Na-
HEPES, 0.35 mg/ml NaHCO3 and 0.05 mg/ml gentamycin 
sulfate. The equilibration solution was M-199 containing 
7.5% (v/v) EG, 7.5% (v/v) DMSO and 20% FBS. The 
basic vitrification solution consisted of 15% (v/v) EG, 
15% (v/v) DMSO and 20% FBS in M-199. 

In the first experiment, vitrification solution was 
supplemented with either 0, 0.25, or 0.5 M sucrose. The 
warming solution was 20% fetal calf serum (FCS) in M-
199 that contained either 0, 0.25 or 0.5 M sucrose, 
depending on the sucrose concentrations of the 
vitrification solution. The dilution solution was 20% FCS 
in M-199 containing either 0, 0.25 or 0.5 M sucrose. The 
washing solution contained 20% FCS in M-199. In the 
second experiment, vitrification solution was 
supplemented with either 0, 5 or 10 M glycerol together 
with 0.5 M sucrose. The warming solution contained 0, 5 
or 10 M glycerol together with 0.5 M sucrose. The dilution 
solution further contained either 0, 5 or 10 M of glycerol 
together with 0.5 M of sucrose. The washing solution 
contained 20% FCS in M-199. 

At first, COCs were treated with equilibration solution at 
room temperature for 5 min. COCs were transferred to 
vitrification solution for 1 min. Then, 3-5 COCs were 
loaded on the filmstrip of a cryotop (Kitazato Inc., Japan) 
and immediately submerged into liquid nitrogen (LN2) for 
10 min. Before vitrification, the surrounding vitrification 
solution was removed by gentle aspiration, leaving a thin 
layer around the oocytes. After vitrification, the oocytes 
were warmed in thawing solution for 5 min. Then, the 
COCs were treated with dilution solution for 5 min. Before 
allowing the oocytes for in vitro maturation, they were 
passed through washing solution for 5 min to remove the 
cryoprotectants. The COCs were evaluated for 
morphological quality as described previously.26 Briefly, 
COCs with multilayered compact cumulus cells and a 
good integrity between oolemma and zona pellucida were 
classified as morphologically normal COCs. The COCs 
with normal morphology were subsequently used for in 
vitro maturation and the rest were discarded. 
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with normal morphology were subsequently used for in 

vitro maturation and the rest were discarded. 

In vitro maturation (IVM)  

The basic medium for oocytes maturation was tissue 

culture medium-199 (TCM-199, Earle's salt with L-

glutamine) and sodium bicarbonate. On the day of 

maturation, TCM-199 was supplemented with 0.1 mg/ml 

sodium pyruvate, 0.08 mg/ml gentamycin sulfate, 5% (v/v) 

FBS and 100 ng/ml follicle stimulating hormone (FSH; 

NIDDK, Washington, DC, USA). The vitrified-thawed 

COCs were washed three times in maturation media. 

COCs were placed in 100 μl IVM-media droplets in 35 

mm petri dish under mineral oil and incubated at 38.5°C, 

5% CO2 in humidified air. After 24 hrs of incubation, 

oocytes were observed under the microscope for cumulus 

expansion. The assessment of cumulus cell expansion was 

carried out as described previously.29 Briefly, COCs with 

one or two layers expanded, one-half of the cumulus 

expanded, all layers expanded other than last layers of 

corona radiata or all layers expanded including corona 

radiate were classified as expanded COCs. All of the 

COCs other than expanded COCs such as COCs without 

cumulus expansion (no observable sign of cumulus 

expansion) were classified as non-expanded COCs. Next, 

the oocytes were picked up from the maturation droplet 

and transferred into another Petri dish containing DPBS. 

After denudation oocytes were fixed in acid-alcohol 

(acetic acid:ethanol is 1:3) for 2 days and stained with 

aceto-glycerol (glycerol:acetic acid:water is 1:1:3) and 

observed under a differential interference contrast (DIC) 

microscope (Olympus Inc., USA) to examine the meiotic 

stages of oocytes.30 

Ethics statement 

All the experimental procedures of this study were 

approved and supervised by the committee for ethical 

standard of research in Bangladesh agricultural university 

research system, Bangladesh agricultural university 

(Reference number: BAURES/ESRC/691/2020). 

Statistical analysis 

All data were subjected to one-way ANOVA and the 

significance of difference among means was determined 

by the Duncan’s multiple range test (DMRT). All 

statistical analyses were conducted using SPSS software 

for windows (IBM SPSS Statistics 22). Values of p<0.05 

were considered significant. 

 RESULTS 

Effects of sucrose on vitrification of buffalo oocytes 

The number of oocytes recovered after vitrification did not 

differ significantly (p<0.05) due to different 

concentrations of sucrose (Table 1). A higher number of 

morphologically normal oocytes were found in 0.5 M 

sucrose treated oocytes than in 0.25 M and 0 M groups. A 

significantly higher (p<0.05) number of oocytes showed 

cumulus expansion in 0.5 M sucrose treated group than 

others (Table 1, Figure 1). The number of oocytes found in 

metaphase I, anaphase I and telophase I stages did not 

significantly (p<0.05) differ within the treatment groups 

(Table 1). The number of degenerated oocytes also did not 

differ significantly (p<0.05) among the groups. However, 

none of those oocytes developed to metaphase II stage 

irrespective of sucrose levels in the vitrification medium 

(Table 1, Figure 1).  

Effects of glycerol on vitrification of buffalo oocytes 

Table 2 showed that number of oocytes recovered after 

vitrification and these numbers did not differ significantly 

(p<0.05) among the treatment groups of glycerol. After 

vitrification, oocytes showed various abnormal 

morphological changes including shrinkage of oocyte 

cytoplasm and nucleus, abnormal shape of oocytes, too 

dark or clear cytoplasm and dissociation of cumulus cells. 

However, the number of morphologically normal oocytes 

was significantly (p<0.05) higher in 5 M glycerol level and 

10 M than in the control (0 M) group. The percentage of 

oocytes showing cumulus expansion was higher in 5 M 

glycerol and 10 M than the control groups. In addition, a 

proportion of oocytes treated with 5 M glycerol reached to 

the MII stage (Figure 2). Oocytes from control group 

showed significantly (p<0.05) higher percentage at the MI 

stage than 5 M and 10 M glycerol. However, proportions 

of oocytes in anaphase I and telophase I did not vary 

among the treatment groups. Proportions of degenerated 

oocytes also did not differ among groups. 

 

Table 1: Morphological status and in vitro maturation of buffalo oocytes vitrified with sucrose. 

Concentrations 

of sucrose 

(M) 

Total 

number of 

oocytes 

examined 

Number (%) 

of oocytes 

recovered 

after 

vitrification 

Number (%) of 

morphologicall

y normal 

oocytes 

Number 

(%) oocytes 

with 

cumulus 

expansion 

Number (%) of oocytes at different 

stages of meiotic division 

MI AI TI DE 

0 20 17 (85) 12 (60)b 9 (52)c 4 (45) 2 (22) 2 (22) 1 (11) 

0.25 20 18 (90) 15 (75)a 15 (83)b 6 (40) 4 (27) 3 (20) 2 (13) 

0.5 20 18 (90) 16 (80)a 18 (100)a 7 (39) 5 (27) 4 (22) 2 (11) 
a-cValues with different superscripts in the same column differed (p<0.05); the meiotic stages of oocytes in this experiment were classified 

as MI=metaphase I; AI=Anaphase I; TI=Telophase I; DE=Degenerate. 
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Figure 1: Typical morphologies of COCs vitrified with sucrose; COCs vitrified with 0, 0.25 and 0.5 M of sucrose 

are shown in A, B and C, respectively; similarly the cumulus cell expansion of these COCs after IVM are shown in 

D, E and F, respectively; the assessment of meiotic progression of oocyte vitrified with 0, 0.25 and 0.5 M of sucrose 

are shown in G, H and I, respectively; scale bars represents 100 μm (in A, B and C), 200 μm (in D, E and F) and 10 

μm (in G, H and I), respectively. 

 

Figure 2: Typical morphologies of COCs vitrified with 0.5 M sucrose and glycerol; COCs recovered after 

vitrification with 0, 5 and 10 M of glycerol are shown in A, B and C, respectively; similarly the cumulus cell 

expansions of these COCs after IVM are shown in D, E and F, respectively; the assessments of meiotic progression 

of oocyte vitrified with 0, 5 and 10 M of glycerol are shown in G, H and I, respectively; scale bars represents 100 

μm (in left and middle panel) and 20 μm (in right panel), respectively. 
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Table 2. Morphological status and in vitro maturation of buffalo oocytes vitrified with glycerol. 

Concentratio

ns of glycerol 

(M) 

Total 

number 

of oocytes 

examined 

Number (%) of 

oocytes 

recovered after 

vitrification 

Number (%) of 

morphologically 

normal oocytes  

Number (%) 

oocytes with 

cumulus 

expansion 

Number (%) of oocytes at different 

stages of meiotic division 

MI AI TI MII DE 

0 16 15 (93) 12 (75)b 8 (56)b 3 (43)a 2 (25) 2 (25) 0 1 (7) 

5 20 20 (100) 17 (87)a 17 (87)a 4 (25)b 4 (25) 4 (25) 3 (18) 2 (12) 

10 16 16 (100) 14 (87)a 14 (87)a 4 (28)b 4 (28) 4 (28) 0 2 (16) 
a,bValues with different superscripts in the same column differed (P< 0.05).The meiotic stages of oocytes in this experiment were classified as MI, 

metaphase I; AI, Anaphase I; TI, Telophase I; DE, Degenerate.

DISCUSSION 

Permeating and non-permeating cryoprotectants are used 
to prevent intracellular ice formation during vitrification. 
Permeating cryoprotectants penetrate the cell membrane 
and prevent ice crystallization. They form hydrogen bonds 
with intracellular water molecules and decrease the 
freezing temperature. PG, EG, glycerol and DMSO are 
permeating cryoprotectants. On the other hand, non-
permeating cryoprotectants dehydrate the intracellular 
water. They are used together with permeating 
cryoprotectants to increase the concentration of the 
permeating cryoprotectants inside the cell and prevent ice-
crystal formation. Sucrose, galactose, trehalose and 
macromolecules are used as non-permeating cryo-
protectants. Glycerol is the first effective cryoprotectant in 
the history of cryobiology.31 In the present study, 
vitrification in sucrose-free medium, containing EG and 
DMSO caused degeneration of fully grown buffalo 
oocytes and dissociation of their surrounding cumulus 
cells. Oocytes treated with sucrose were protected from 
cryo-damage and showed normal morphology, especially 
in terms of the integrity of the oocytes and cumulus cells 
after vitrification. Sucrose protects the oocytes in porcine 
primordial follicles from cryo-damage caused by 
vitrification.27 Oocytes treated with sucrose (0.25 M and 
0.5 M) resumed meiosis but did not mature to the MII 
stage. However, when glycerol was added in sucrose 
supplemented media, a proportion of the vitrified oocytes 
developed to the MII stage. Similar results were obtained 
by Yamada et al who investigated the effects of warming 
procedure on in vitro matured buffalo oocytes vitrified by 
cryotop.32 Survival and cleavage rates as well as efficiency 
of vitrification were significantly higher in oocytes treated 
with higher concentration of glycerol. Wani et al vitrified 
buffalo oocytes with mini-straw and reported that 
immature buffalo oocytes vitrified with DMSO, EG, 
PROH and glycerol together with 0.5 M sucrose matured 
in vitro and developed to the blastocyst stage.7 

In the present study, EG and glycerol in combination 
supported maximum protection of buffalo oocytes from 
cryo-injury and as glycerol is less permeable, it protects 
cytoplasmic membrane from cryo-injury. EG protects the 
intracellular structures of oocytes as it is more 
permeable.33 Thus, ultimately, the oocytes maintain their 
potential for further development, meiotic maturation. The 
proportions of oocytes matured after vitrifcation in 
glycerol-containing media were comparable to the results 

obtained by Hammam et al.34 The rate of maturation of 
vitrified oocytes was lower than the fresh control oocytes 
where the vitrification and warming process changed the 
physicochemical characteristics of intracellular lipids and 
such changes caused the oocyte incapable of meiotic 
progression.35 Moreover, it has been reported that glycerol 
causes an osmotic change to the cytoplasm because of its 
low membrane permeability. This leads to a decrease in 
survival rate of oocytes due to osmotic stress produced by 
the cryoprotectants as a result of low permeability of 
glycerol and more water penetration to the oocytes than the 
glycerol.36 It has been reported that cryoprotectants have a 
toxic effect on mammalian oocytes.37 

In the present study, vitrification and warming were 

carried out with the help of cryotop. This may be the 

reason for the higher recovery and survival rate of oocytes 

in this study compared to the results of Hammam et al.38 

The cryotop method is the most effective way of 

cryopreservation of human embryos and has been 

employed in approximately 230 IVF hospitals in 8 

countries during the early of 2000s.39 In-straw vitrification 

of oocytes causes a delay in heat loss which results an 

intracellular recrystallization during the warming 

process.40 An alternate cryo-device is required to support 

the cooling and warming rates during vitrification and 

warming.41 Cryotops and open-pull straw (OPS) improved 

the cooling rate by reducing the surface to volume ratio 

and exposing vitrification drop directly into LN2.22,42 

Vitrification of buffalo oocytes with sucrose and glycerol 

increased the percentages of oocytes with cumulus 

expansion. Oocytes directly affect mouse granulosa cell 

function in culture condition.43,44 Removal of oocytes 

using micromanipulation from oocyte-cumulus cell 

complexes prevents FSH-induced mucification and 

expansion of cumulus cells. Mouse oocytes secrete a factor 

named cumulus expansion-enabling factor. Now, the 

predicted cumulus expansion-enabling factor has been 

identified as growth differentiation factor-9 (GDF9) in 

mice and it has been reported that mouse oocytes regulate 

energy production by granulosa cells through oocyte-

derived bone morphogenetic protein-15 (BMP15).45 In the 

present study, it is thought that the sucrose and glycerol 

protect cumulus-oocyte complexes from cryo-injury, 

which in turn promotes the secretion of oocyte-derived 

GDF9 and BMP15 and expansion of cumulus cells in the 

experimental conditions. 
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CONCLUSION 

In conclusion, sucrose was useful in protecting buffalo 

oocytes from cryo-injury, however, it was unable to 

support the development of oocytes after vitrification and 

warming. On the other hand, glycerol maintained the 

developmental ability of buffalo oocytes. However, the 

mechanism that regulates the in vitro maturation of 

glycerol treated buffalo oocytes was not understood 

clearly. Moreover, in the present study, buffalo oocytes 

were vitrified with a combination of sucrose (0.5 M) and 

glycerol (5 M) in order to maintain its developmental 

competence. Further studies are required to determine the 

appropriate combination of the two cryo-protectant 

substances since the concentration of sucrose used with the 

varying amount of glycerol in this study was constant. 
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